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Numerous recent studies have found that overweight adults experience lower overall mortality than those who
are underweight, normal-weight, or obese. These highly publicized findings imply that overweight may be the
optimal weight category for overall health via its association with longevity—a conclusion with important public
health implications. In this study, the authors examined the association between body mass index (BMI; (weight
(kg)/height (m)?)) and 3 markers of health risks using a nationally representative sample of US adults aged 20-80
years (n = 9,255) from the National Health and Nutrition Examination Survey (2005-2008). Generalized additive
models, a type of semiparametric regression model, were used to examine the relations between BMI and bio-
markers of inflammation, metabolic function, and cardiovascular function (C-reactive protein, hemoglobin A, and
high density lipoprotein cholesterol, respectively). The association between BMI and each biomarker was
monotonic, with higher BMI being consistently associated with worse health risk profiles at all ages, in contrast
to the U-shaped relation between BMI and mortality. Prior results suggesting that the overweight BMI category

corresponds to the lowest risk of mortality may not be generalizable to indicators of health risk.

adult; biological markers; body mass index; health; overweight; models, statistical; mortality

Abbreviations: BMI, body mass index; CRP, C-reactive protein; GAM, generalized additive model; HbA1c, hemoglobin Ag;
HDL, high density lipoprotein; NHANES, National Health and Nutrition Examination Survey.

More than 34% of US adults are overweight, and an ad-
ditional 34% are obese (1, 2). Given these proportions, an
accurate understanding of how body weight is associated
with health risks is crucial to clinical and public health
policy. Numerous recent studies have examined the associ-
ation between body weight and mortality (3-6). These stud-
ies have consistently shown a U-shaped relation, with both
obese (>30) and underweight (<18.5) body mass index
(BMI) categories being associated with higher mortality
relative to normal weight (BMI 18.5-25). Somewhat sur-
prisingly, investigators have consistently reported that over-
weight adults (BMI 25-30) have mortality risks no higher or
lower than those of normal-weight adults (3, 5-12).

In the popular press, the association between overweight
and lower mortality risk has been generalized to health out-
comes, with the implication that carrying extra body weight
does not impair health. For instance, an article in the New

York Times noted that “‘chubby. .. may be the new healthy”
when reporting on a recent study of BMI and mortality (13).
These mortality findings and their portrayal by the media
have attracted wide attention because of their seeming con-
tradiction with clinical and public health messages about the
health risks associated with excess body weight.
Researchers have long suspected that the observed
U-shaped relation between BMI and mortality risk is a result
of confounding by preexisting disease (sometimes referred
to as reverse causality) or by sarcopenia (loss of lean body
mass), typical among the elderly (14—17). Low BMI then
may not reflect a healthy body composition but instead may
be a consequence of weight loss from disease processes
leading to death. This confounding may create a spurious
association between lower body weight and a higher risk of
death (16, 18). To address the “‘reverse causality” problem,
investigators have sometimes eliminated study subjects who
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died within the first several years after measurement of body
weight (15, 19). These adjustments often shifted the nadir of
the mortality curve so that the optimal BMI for longevity
was in the normal range (12, 16, 18, 20-22). However, this
solution has come at the expense of excluding a large por-
tion of the study sample, limiting the generalizability of the
findings.

Moreover, mortality studies focus attention on the upper
tail of the age distribution and thus do not inform health
processes across the full adult life span. If we are interested
in understanding the effects of body weight on health, a bet-
ter approach is to examine the association of excess body
weight and health measures. The health consequences of
obesity are known to include a range of negative outcomes,
from potentially life-threatening conditions such as diabetes
or cardiovascular disease (23-25) to nonfatal chronic illness
such as osteoarthritis (26, 27) to physical limitations and
poor general health (11, 28-33). The findings for over-
weight, relative to normal-weight adults, are mixed. Some
investigators have reported a higher prevalence of chronic
conditions among the overweight (34, 35), while others have
found the health of overweight adults to be on par with that
of their normal-weight counterparts (9, 31, 36).

Compared with the larger literature on health outcomes,
relatively few studies have examined the relation between
BMI and biologic indicators of health status. Biomarkers
offer a powerful tool for investigating both clinical and sub-
clinical health deficits, unbiased by reporting problems as-
sociated with specific health conditions. Many biomarkers
are strong predictors of chronic diseases, which in turn are
major causes of morbidity and mortality. For instance,
C-reactive protein (CRP) is a marker of systemic inflamma-
tion associated with cardiovascular disease, a leading cause
of death in the United States (6, 37). Several studies have
shown that obese adults have higher CRP levels (38, 39)
than adults in the normal weight range. There have been
fewer studies on the nature of the association between
BMI and other biomarkers, such as high density lipoprotein
(HDL) cholesterol and hemoglobin A;. (HbAlc), a marker
of long-term blood glucose regulation. Some studies have
found that excess body weight is associated with lower HDL
cholesterol (higher levels are considered healthier) (40),
while others have found no association (41). The association
between overweight and obesity and elevated HbAlc was
found in some studies (42) but not in others (43). Impor-
tantly, none of these projects evaluated the shape of the
association but only compared normal-weight subjects with
overweight and/or obese subjects.

Additionally, existing literature has not adequately taken
account of age. While all previous studies controlled for
age, the investigators did not evaluate the possibility that
age moderates the association between weight and health
outcomes. Body weight changes systematically as people
age (44, 45), and its effect on health may also change across
the life course (20, 46). Understanding how age modifies the
BMI-health association could help reconcile the late-in-life
findings that higher body weights are optimal for longevity
with the general perception that elevated body weight is
associated with worse health outcomes during the majority
of adulthood.
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To further shed light on this issue, we analyzed the shape
of the association between BMI and biomarkers, shifting the
focus from mortality to objectively measured indicators of
health risk. We present results for 3 biologic risk indicators
(CRP, glycated hemoglobin or HbAlc, and HDL choles-
terol) in a nationally representative sample of US adults
aged 20-80 years. We employed semiparametric models
to determine the shape of the BMI-biomarker associations
without imposing any constraints on the form and also ex-
amined whether the association varied with age. We found
that in all age and sex groups, a higher BMI was associated
with a worse biologic risk profile. These findings will help
inform clinical and public health discourse about the health
risks associated with body weight throughout the life span.

MATERIALS AND METHODS
Data

Data source. These analyses were based on the 2 most
recent waves of the National Health and Nutrition Exami-
nation Survey (NHANES), NHANES 2005-2006 and
NHANES 2007-2008 (47). These ongoing surveys collect
an extensive range of demographic, socioeconomic, life-
style, and health-related data, including biologic measures,
through a combined household interview and separate med-
ical examination. NHANES is representative of the nonin-
stitutionalized civilian US population. The survey uses
a stratified, multistage probability sampling design with an
oversample of African Americans, Hispanics, low-income
persons, and older adults. During the examination, blood
and urine are collected for laboratory analysis. The response
rate for the NHANES interview was approximately 80% in
2005-2006 and 78% in 2007-2008; approximately 96% of
the persons interviewed also participated in the subsequent
medical examination (48).

Analytic sample. We defined the analytic sample as
adults aged 20-80 years who were not pregnant at the time
of the examination (n = 10,173). Of this group, 408 adults
(4.0%) were missing the weight and height information nec-
essary to calculate BMI, as well as data on all 3 biomarkers
used in the study. An additional 119 (1.1%) were missing
data for biomarkers only, and 144 (1.4%) were missing data
for BMI only. We conducted bivariate and multivariate anal-
yses to determine patterns of missingness, especially insofar
as it could bias our findings. Persons missing BMI or
biomarker data were significantly more likely to be older,
non-Hispanic black, and in poor health and to have been
interviewed by proxy. No significant differences in missing-
ness were found by marital status, education, or income.
These results suggested that most missingness occurred
among the elderly and ill, perhaps because they were unable
to undergo the examination or portions of it (such as stand-
ing up for height measurement or stepping on the scale for
weight measurement). Finally, we restricted the BMI range
to 15-45 because of the sparse data at the extremes of the
BMI distribution, relative to the data needs of our semipara-
metric models. This restriction excluded 247 adults (2.6% of
the sample) with extremely low or high BMIs, resulting in
a final sample size of 9,255 observations. Results with the
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extreme BMI values included were virtually identical to
those presented (with less precision in the tails) and are
available upon request.

Measures

The key predictor, BMI, was calculated from height and
weight using the formula BMI = (weight (kg)/height (m)?).
Height and weight were measured by trained technicians
during the medical examination.

Outcomes included 1) high-sensitivity CRP (mg/dL) as
a marker of inflammation, 2) HbAlc (%) as a marker of
metabolic risk, and 3) HDL cholesterol (mg/dL) as a marker
of cardiovascular risk. CRP data were log-transformed to
correct for their right-skewed distribution. Details of the
laboratory procedures have been published elsewhere (49).

Control variables included age, sex, and smoking status.
Age was modeled continuously in years; sex was dichoto-
mous (female = 1). Smoking status was included as a key
potential confounder of the BMI-biomarker relation: It is
known to be significantly related to lower BMI, as well as
elevated levels of CRP and HbAlc (50-52). Smoking status
was trichotomized as current smoker, past smoker, or never
smoker (reference).

Analysis

We employed generalized additive models (GAMs) to
examine the shape of the association between BMI and
the biomarkers (53). The GAM is an extension of the
generalized linear model in that 1 or more predictors
may be specified using a smooth function f(x). The general
structure of the GAM is M = By +f1(x1) + ... + fi(xe),
where a smooth monotonic link function g(y) transforms
the expected value of y, E(u), to 1. The variable y can follow
any distribution from the exponential family—for instance,
for sensitivity analyses with dichotomized biomarkers, y
had a binomial distribution and the link function g(u) was
logit(u), or log(u/(1 — ).

The key advantage of GAMSs over generalized linear
models is the flexibility derived from the data-driven shape
of the f(x) functions, which avoids the need for a priori
assumptions about the shape of a predictor’s effect (54,
55), such as the stepwise linear or quadratic functional form
typically used to specify the effect of BMI on health out-
comes. The functions f{x) can be constructed using various
spline smoothing functions; the thin plate regression spline
smoother was used here (56). Computation of this smoother
is efficient, and the position of the knots is estimated directly
from the data. The smoothness for the functions f{x) is cal-
culated with the goal of optimal balance between the fit to
the data and excessive ‘“‘wiggliness” of the functions.

The GAM is estimated using a penalized maximum likeli-
hood procedure—usually iteratively reweighted least
squares (57), although alternative fitting approaches can
be used (57, 58). After the basis for the function f(x) is
chosen, the GAM reduces to a generalized linear model,
which makes it possible to conduct standard model-building
and diagnostic procedures. Model fit is estimated using gen-
eralized cross-validation based on the prediction mean

square error, the unbiased risk estimator, and Akaike’s
Information Criterion. Confidence intervals for parameter
estimates are calculated using the posterior distribution of
the model coefficients. The P values associated with model
coefficients are estimated from the covariance matrix of f’s,
with the caveat that they are marginally smaller than ex-
pected under the null hypothesis (57). Models can be com-
pared using an approximation to the likelihood ratio test for
nested models.

GAMs can accommodate the “‘interaction’ of 2 or more
predictors, in a way that is conceptually comparable to in-
teractions in generalized linear models. The joint smooth
function can be specified in different ways; we used tensor
product smooths, optimal for predictors measured on differ-
ent scales—for instance, age and BMI. In this paper, results
are presented graphically as line graphs showing the esti-
mated function for BMI with 95% Bayesian credible (con-
fidence) intervals. Web Figure 1, which is posted on the
Journal’s Web site (http://aje.oxfordjournals.org/), presents
the results in terms of 3-dimensional plots characterizing the
effect of the interaction between BMI and age on each out-
come. Results in all models were stratified by sex. The
software package R 2.9.2 (R Foundation for Statistical
Computing, Vienna, Austria) was used to fit the models.
Descriptive data on the sample were adjusted for the sam-
pling design.

We conducted numerous sensitivity analyses to assess
the stability of our findings to alternative model specifica-
tions. We fitted logistic models of dichotomized biomarkers
using standard cutpoints for elevated levels (59). The results
were nearly identical to those shown here and are
available upon request. We also fitted models controlling
for key sociodemographic characteristics—race/ethnicity
and education—as potential confounders of the BMI-
biomarker relations, as well as models stratified by race/
ethnicity, education, and smoking status. In all of these
models, we found the same pattern of a monotonic relation
between BMI and each biomarker. Additionally, we fitted
models of biomarkers that controlled for self-reported phys-
ical activity level and use of cholesterol-lowering medica-
tion. Physical activity was significantly associated with all
biomarkers in the expected direction for both men and
women, but it did not affect the shape of the BMI-biomarker
associations. Similarly, use of cholesterol-lowering medica-
tion, reported by 9% of the analysis sample, was signifi-
cantly associated with HDL cholesterol but did not affect
the BMI-HDL cholesterol relation. All results are available
upon request.

RESULTS

Table 1 summarizes the characteristics of the analysis
sample. Roughly half were women; the average age of re-
spondents was 46 years. The average BMI was approxi-
mately 28. The mean CRP level was somewhat higher for
women than for men (0.44 mg/dL vs. 0.34 mg/dL); the mean
HbA Ic level for both sexes was approximately 5.5%. The
mean HDL cholesterol level was 48 mg/dL for men and 59
mg/dL for women.
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Table 1. Characteristics of the Analysis Sample (n = 9,255),
National Health and Nutrition Examination Survey, 200520082

Men Women

Mean (SE) % Mean (SE) %

Proportion of total 49.5 50.5
Age, years 45.4 (0.44) 47.1 (0.39)
Body mass index® 28.2 (0.12) 27.9 (0.14)
Obese (body mass 31.6 33.5
index >30)
Race/ethnicity
Non-Hispanic white 70.5 71.2
Non-Hispanic black 10.5 11.5
Hispanic 13.4 11.4
Other 5.7 5.9
Education
Less than high school 19.7 17.5
Completion of high 25.7 24.6
school
More than high school 54.6 57.9
Current smoker 35.6 22.9
Biomarkers
C-reactive protein, 0.34 (0.01) 0.44 (0.01)
mg/dL
Hemoglobin Ay, % 5.52 (0.02) 5.49 (0.02)
High density lipoprotein 47.54 (0.29) 58.62 (0.49)

cholesterol, mg/dL

Abbreviation: SE, standard error.
@ Data were adjusted for the sampling design.
b Calculated as 703 x (weight (pounds)/height (inches)?).

Figure 1 shows GAM results from models of the 3 bio-
markers (CRP, HbAlc, and HDL cholesterol) as a function
of BMI for men, adjusted for age (column 1) and age plus
smoking status (column 2). Along the x-axis is a rug plot
showing the density distribution of BMI in the sample; the
line shows the estimated functional form for BMI, and the
shaded area indicates the 95% confidence interval. Among
men, the age-adjusted association between BMI and each bio-
marker was generally monotonic from the lowest BMIs
through the highest BMIs, in the expected direction: positive
for CRP and HbAlc and negative for HDL cholesterol. An
exception to this pattern was found at the lowest BMIs for
CRP, suggesting a slight increase in systemic inflammation
among men with the lowest BMIs. This pattern was due to
the higher proportion of smokers at the lowest body weights.
Since smokers tend to have both lower BMIs and higher CRP
levels, adjusting for smoking (column 2) resulted in a mono-
tonic BMI-CRP association across the full range of body
weights. Besides this change, controlling for smoking had
little observable effect on the BMI-biomarker associations.

Figure 2 presents GAM results from comparable models
for women. The patterns were similar to those of men; the
association between BMI and each biomarker was mono-
tonic across the entire BMI range rather than U-shaped.
Controlling for smoking, a potential confounder of the
relation, had no effect on the BMI-biomarker associations.
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Web Figure 1 shows models of the 3 biomarkers with
an “interaction” between BMI and age. These models are
important for attempting to reconcile the monotonic bio-
marker results with the U-shaped association in prior mor-
tality studies: They allow us to see whether the monotonic
association observed in Figures 1 and 2 persists through the
full life span. The plots show BMI on the x-axis, age on the
y-axis, and each individual biomarker on the vertical z-axis.
The height of the surface indicates the relative level of a bio-
marker for each BMI-age combination. The plots show that
age modified the association between BMI and biomarkers
to some degree. The effect of BMI on HbAlc became stron-
ger with age among both sexes, while the effect on log CRP
became somewhat less pronounced at older ages. However,
we found no evidence of a U-shaped association between
BMI and any biomarker at any age—the association was
attenuated or became stronger but remained monotonic in
the expected direction across all ages, both sexes, and all
examined biomarkers.

DISCUSSION

In this study, we employed a semiparametric modeling
approach to examine the shape of the association between
BMI and adult health as measured by 3 biologic risk in-
dicators: CRP, HbAlc, and HDL cholesterol. The question
was motivated in part by the methodological debate over the
U-shaped pattern observed between BMI and mortality. Our
results showed that the mortality findings do not generalize
to biologic markers of health risk. Each biomarker exhibited
a clear, strong, monotonic relation with body weight from
the lowest BMIs to the highest BMIs, such that higher
weight was associated with a worse risk profile across the
full adult life span.

The monotonic relation between BMI, a proxy for the
amount of body fat, and different indicators of biologic risk
is consistent with known causal mechanisms for relations
between adipose tissue and physiologic processes. Excess
body weight influences the onset and progression of chronic
illness through multiple pathways. Adipose tissue is an ac-
tive organ, releasing nonesterified fatty acids, hormones (in-
cluding leptin), glycerol, proinflammatory cytokines (such
as tumor necrosis factor-a), interleukin-6, and other bioac-
tive mediators (60, 61). Among overweight persons, the
increased number of adipocytes results in higher levels of
these factors, which change the regulation of basic physio-
logic processes. For instance, obese persons tend to be
insulin-resistant, which leads to higher levels of circulating
glucose. Among nondiabetic persons, pancreatic B cells re-
lease an increased amount of insulin to overcome the insulin
resistance. Diabetes develops when the pancreas is unable to
release enough insulin to compensate for the resistance (62).
Paradoxically, the nonesterified fatty acids released by the
adipose tissue impair the functioning of the pancreatic P
cells, creating a negative feedback loop leading to diabetes.
Obesity and insulin resistance are further related to alter-
ations in plasma lipids such as HDL cholesterol (63). An
additional pathway between BMI and cardiovascular dis-
ease involves the proinflammatory cytokines tumor necrosis
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Figure 1. Relations between body mass index (BMI; weight (kg)/height (m)?) and selected biomarkers for men, National Health and Nutrition
Examination Survey, 2005-2008. Results were adjusted for age only (left column) and for age plus smoking (right column). The first row (plots A
and B) shows relations between BMI and C-reactive protein (CRP); the second row (plots C and D) shows relations between BMI and hemoglobin
A;c (HbA1c); and the third row (plots E and F) show relations between BMI and high density lipoprotein cholesterol (HDL). The solid lines represent
the estimated relation, and the shaded areas represent the 95% confidence interval.

factor-ao and interleukin-6, whose expression is up-regulated
by adipose tissue (63).

Several factors might explain the different association
between BMI and biomarkers versus BMI and mortality.
First, while the measured biomarkers are predictive of many
diseases that can result in death, the associations may be
stronger for morbidity and mortality that occurs in middle
age and early old age (64). Previous work has shown that
high BMI is more strongly associated with mortality under
age 75 years (65), while the majority of deaths in the United
States occur at ages over 75 years (66). With increasing age,
the associations of biomarkers such as higher cholesterol,
glucose, and blood pressure with mortality weaken (67).
Thus, our findings capture the monotonic relation between
adiposity and biomarkers that persists through the adult life
course, but the biomarkers are poor predictors of mortality
at older ages.

Additionally, while biomarkers are predictive of chronic
diseases that may lead to death, the links among the 3 fac-
tors are probably complicated by numerous effects like ge-
netic predisposition toward specific conditions, medical
interventions, or comorbid conditions. The complex associ-
ations may lead to a differently shaped population-level
association between BMI and biomarkers as compared with
BMI and all-cause mortality. The complex links among
BMLI, health risks, health outcomes, and mortality are con-
sistent with evidence that while obesity-related mortality
has decreased over time, obesity-related disability due to
various chronic conditions has increased (32).

It is also possible that the association between BMI and
overall health is indeed monotonic at all ages, while the
U-shaped relation observed with mortality risk is an artifact
of confounding (reverse causality), as suggested by previ-
ous investigators (15, 16). Thus, in addition to better
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Figure 2. Relations between body mass index (BMI; weight (kg)/height (m)?) and selected biomarkers for women, National Health and Nutrition
Examination Survey, 2005-2008. Results were adjusted for age only (left column) and for age plus smoking (right column). The first row (plots A
and B) shows relations between BMI and C-reactive protein (CRP); the second row (plots C and D) shows relations between BMI and hemoglobin
A;c (HbA1c); and the third row (plots E and F) show relations between BMI and high density lipoprotein cholesterol (HDL). The solid lines represent
the estimated relation, and the shaded areas represent the 95% confidence interval.

understanding the relation between BMI and health risks
and conditions, researchers should address the reverse cau-
sality problem by analyzing long-term changes in body
weight and their effect on mortality. A recent study of
weight trajectories among older men (68) is a good step in
this direction.

The main strength of this study was its semiparametric
analytic approach, which allowed the data to fully inform
the shape of the BMI-biomarker association. Additionally,
all outcome variables, as well as BMI, were objectively
measured, eliminating the threat of bias caused by system-
atic differences in health assessment that are inherent in
self-reported data. The use of biomarkers allowed us to de-
tect health differences in all age groups, including younger
adults, for whom clinical symptoms of diseases are rela-
tively rare. Finally, the nationally representative data permit
generalizing the findings to the general US adult population
from early adulthood to old age.

Am J Epidemiol 2011;173:430-437

The use of BMI as a proxy for adiposity is an important
limitation of the study. BMI cannot distinguish between fat
and lean tissue, introducing measurement error. BMI also
does not distinguish between types of adipose tissue; com-
pared with subcutaneous fat, visceral body fat within the
abdominal cavity is more metabolically active (69) and
may be more closely related to the analyzed biomarkers.

These findings imply that obesity researchers should ex-
ercise caution when interpreting mortality findings in
broader health terms. From a public health perspective,
the findings suggest that even moderate levels of overweight
may indicate worse health risk profiles than lower body
weights, with potentially important implications for chronic
disease and health-related quality of life. More research
is needed to reconcile the contradictory findings of BMI’s
U-shaped relation with mortality versus its monotonic re-
lation with biomarkers. Two promising avenues include ex-
amination of the shape of the association between BMI and
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major health conditions and longitudinal studies of BMI
trajectories among older adults and mortality.
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